(Non-)decay for the massless Vlasov equation on subextremal and extremal Reissner–Nordström

Max Weissenbacher

Department of Mathematics Imperial College London

Mathematical GR and Hyperbolic PDE Seminar, 21.10.2022

• • • • • • • • • • •

1 Introduction

2 Preliminaries

3 Main results

4 Related results

Sketch of the proof

6 Summary

Introduction

2 Preliminaries

3 Main results

4 Related results

5 Sketch of the proof

6 Summary

Explicit black hole solutions:

- Schwarzschild
- Reissner–Nordström
- Kerr

Explicit black hole solutions:

- Schwarzschild
- Reissner–Nordström
- Kerr

イロト イヨト イヨト イヨ

Explicit black hole solutions:

- Schwarzschild
- Reissner–Nordström
- Kerr

イロト イ団ト イヨト イヨ

Explicit black hole solutions:

- Schwarzschild
- Reissner–Nordström
- Kerr

< □ > < 同 > < 回 > < Ξ > < Ξ

Recently tremendous progress on stability of subextremal black holes, e.g.

Dafermos–Holzegel–Rodnianski–Taylor ('22), Giorgi–Klainerman–Szeftel ('22), Angelopoulos–Aretakis–Gajic ('16-'21), Shlapentokh-Rothman–Teixeira da Costa ('20), Häfner–Hintz–Vasy ('19), Dafermos–Holzegel–Rodnianski ('19), Dafermos–Rodnianski–Shlapentokh-Rothman ('16), . . .

degenerate red-shift effect

e coupling of trapping and superradiance

degenerate red-shift effect

イロト イ団ト イヨト イヨ

- degenerate red-shift effect
 - Leads to instability for wave equation*

イロト イ団ト イヨト イヨ

e coupling of trapping and superradiance

- degenerate red-shift effect
 - Leads to instability for wave equation*
 - Already present for ERN

イロト イ団ト イヨト イヨ

e coupling of trapping and superradiance

- degenerate red-shift effect
 - Leads to instability for wave equation*
 - Already present for ERN

e coupling of trapping and superradiance

イロト イヨト イヨト イ

- degenerate red-shift effect
 - Leads to instability for wave equation*
 - Already present for ERN

- Output in the second second
 - Not even understood on the level of massless linear fields

イロト イヨト イヨト イ

- degenerate red-shift effect
 - Leads to instability for wave equation*

Not even understood on the level of massless

• Already present for ERN

e coupling of trapping and superradiance

< □ > < 同 > < 回 > < Ξ > < Ξ

Precedent for studying the **massless Vlasov** equation to understand phenomena which are not well understood for other massless linear fields: Moschidis ('18,'20), Poisson–Israel ('89,'90)

linear fields

Introduction

2 Preliminaries

3 Main results

4 Related results

5 Sketch of the proof

6 Summary

The Reissner–Nordström (RN) spacetime

Reissner–Nordström black hole of mass m and electrical charge $|q| \leq m$:

$$g = -\Omega^2 dt^2 + \Omega^{-2} dr^2 + r^2 d\omega^2, \quad \Omega^2 = 1 - \frac{2m}{r} + \frac{q^2}{r^2}$$

<ロ> (日) (日) (日) (日) (日)

The Reissner–Nordström (RN) spacetime

Reissner–Nordström black hole of mass m and electrical charge $|q| \leq m$:

$$g = -\Omega^2 dt^2 + \Omega^{-2} dr^2 + r^2 d\omega^2, \quad \Omega^2 = 1 - \frac{2m}{r} + \frac{q^2}{r^2}$$

The solution is subextremal when |q| < m and extremal when |q| = m.

イロト イロト イヨト イヨト

The Reissner-Nordström (RN) spacetime

Reissner–Nordström black hole of mass *m* and electrical charge $|q| \leq m$:

$$g = -\Omega^2 dt^2 + \Omega^{-2} dr^2 + r^2 d\omega^2, \quad \Omega^2 = 1 - rac{2m}{r} + rac{q^2}{r^2}$$

The solution is subextremal when |q| < m and extremal when |q| = m.

Figure: (t^*, r) -coordinates and double null coordinates

・ロト ・四ト ・日ト ・日

The Reissner-Nordström (RN) spacetime

Reissner–Nordström black hole of mass m and electrical charge $|q| \leq m$:

$$g = -\Omega^2 dt^2 + \Omega^{-2} dr^2 + r^2 d\omega^2, \quad \Omega^2 = 1 - rac{2m}{r} + rac{q^2}{r^2}$$

The solution is subextremal when |q| < m and extremal when |q| = m.

Figure: τ -time function

イロト イヨト イヨト イヨ

Coordinates $\{x^{\mu}\}$ on M induce conjugate coordinates $\{x^{\mu}, p^{\mu}\}$ on TM by representing each $p \in T_x M$ as $p = p^{\mu} \partial_{\mu}|_x$.

イロト イヨト イヨト イヨト

Coordinates $\{x^{\mu}\}$ on M induce conjugate coordinates $\{x^{\mu}, p^{\mu}\}$ on TM by representing each $p \in T_x M$ as $p = p^{\mu} \partial_{\mu}|_x$.

The mass-shell is defined by

$$\mathcal{P} = \Big\{ (x, p) \in TM : g(x)(p, p) = 0, p \text{ is future-directed} \Big\}.$$

イロト イヨト イヨト イヨト

Coordinates $\{x^{\mu}\}$ on M induce conjugate coordinates $\{x^{\mu}, p^{\mu}\}$ on TM by representing each $p \in T_x M$ as $p = p^{\mu} \partial_{\mu}|_x$.

The mass-shell is defined by

$$\mathcal{P} = \left\{ (x, p) \in TM : g(x)(p, p) = 0, p \text{ is future-directed}
ight\}.$$

A function $f : \mathcal{P} \to \mathbb{R}_{\geq 0}$ solves the massless Vlasov equation if f is conserved along the geodesic flow or equivalently

$$X(f) = 0, \quad X = p^{\mu}\partial_{\mu} - \Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\partial_{p^{\mu}}$$

Coordinates $\{x^{\mu}\}$ on M induce conjugate coordinates $\{x^{\mu}, p^{\mu}\}$ on TM by representing each $p \in T_x M$ as $p = p^{\mu} \partial_{\mu}|_x$.

The mass-shell is defined by

$$\mathcal{P} = \left\{ (x, p) \in TM : g(x)(p, p) = 0, p \text{ is future-directed} \right\}.$$

A function $f : \mathcal{P} \to \mathbb{R}_{\geq 0}$ solves the massless Vlasov equation if f is conserved along the geodesic flow or equivalently

$$X(f)=0, \quad X=p^{\mu}\partial_{\mu}-\Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\partial_{p^{\mu}}$$

We define moments of f for suitable polynomially-in-p bounded weights $w : \mathcal{P} \to \mathbb{R}$

$$\int_{\mathcal{P}_x} wf \, d\mu_x, \quad \text{e.g. } T^{\mu\nu}[f] = \int_{\mathcal{P}_x} p^{\mu} p^{\nu} f \, d\mu_x.$$

イロト イヨト イヨト イヨト

Introduction

2 Preliminaries

3 Main results

4 Related results

Sketch of the proof

6 Summary

Theorem 1 (Exponential decay on subextremal RN)

Assume f solves the massless Vlasov equation on subextremal RN and the initial distribution $f_0 : \mathcal{P}|_{\Sigma_0} \to [0, \infty)$ is smooth and compactly supported. Then for all $x \in M$ with $\tau(x) \ge 0$

$$\int_{\mathcal{P}_x} wf \, d\mu_x \leq C \|f_0\|_{L^{\infty}} \frac{1}{r^2} e^{-c\tau(x)},$$

for an appropriate choice of $C = C(w, \text{supp}(f_0), m, q)$ and c = c(m, q).

イロト イ団ト イヨト イヨト

Theorem 1 (Exponential decay on subextremal RN)

Assume f solves the massless Vlasov equation on subextremal RN and the initial distribution $f_0 : \mathcal{P}|_{\Sigma_0} \to [0, \infty)$ is smooth and compactly supported. Then for all $x \in M$ with $\tau(x) \ge 0$

$$\int_{\mathcal{P}_x} wf \ d\mu_x \leq C \|f_0\|_{L^{\infty}} \frac{1}{r^2} e^{-c\tau(x)},$$

for an appropriate choice of $C = C(w, \text{supp}(f_0), m, q)$ and c = c(m, q).

Note:

•
$$C = C(w, \operatorname{supp}(f_0), m, q)$$
 and $c = c(m, q)$, degenerate as $|q| \to m$.

イロト イ団ト イヨト イヨト

Theorem 1 (Exponential decay on subextremal RN)

Assume f solves the massless Vlasov equation on subextremal RN and the initial distribution $f_0 : \mathcal{P}|_{\Sigma_0} \to [0, \infty)$ is smooth and compactly supported. Then for all $x \in M$ with $\tau(x) \ge 0$

$$\int_{\mathcal{P}_x} wf \ d\mu_x \leq C \|f_0\|_{L^{\infty}} \frac{1}{r^2} e^{-c\tau(x)},$$

for an appropriate choice of $C = C(w, \text{supp}(f_0), m, q)$ and c = c(m, q).

Note:

- $C = C(w, \operatorname{supp}(f_0), m, q)$ and c = c(m, q), degenerate as $|q| \to m$.
- For every κ > 0, λ > 2 there exists w = w(p) such that the associated moment decays at the faster rate r^{-λ}e^{-κτ(x)}.

イロト イヨト イヨト イヨト

• Compact and full measure vol $\mathcal{B}_{\delta} \sim \delta^2$.

・ロト ・回ト ・ヨト ・ヨト

- Compact and full measure vol $\mathcal{B}_{\delta} \sim \delta^2$.
- Approximate the null generators of \mathcal{H}^+ as $\delta \to 0$.

- Compact and full measure vol $\mathcal{B}_{\delta} \sim \delta^2$.
- Approximate the null generators of \mathcal{H}^+ as $\delta \to 0$.
- Explicitly characterised.

- Compact and full measure vol $\mathcal{B}_{\delta} \sim \delta^2$.
- Approximate the null generators of \mathcal{H}^+ as $\delta \to 0$.
- Explicitly characterised.

イロト イヨト イヨト イヨ

Theorem 2 (Polynomial decay on extremal RN)

Assume f solves the massless Vlasov equation on ERN and $f_0 = f|_{\Sigma_0}$ is smooth and compactly supported.

イロン イ団 とく ヨン イヨン
Assume f solves the massless Vlasov equation on ERN and $f_0 = f|_{\Sigma_0}$ is smooth and compactly supported. Then for all $x \in M$ with $\tau(x) > 1$

$$\int_{\mathcal{P}_x} wf \, d\mu_x \leq C \|f_0\|_{L^\infty} \frac{1}{r^2} \frac{1}{\tau(x)^2}.$$

イロト イ団ト イヨト イヨト

Assume f solves the massless Vlasov equation on ERN and $f_0 = f|_{\Sigma_0}$ is smooth and compactly supported. Then for all $x \in M$ with $\tau(x) > 1$

$$\int_{\mathcal{P}_x} wf \ d\mu_x \leq C \|f_0\|_{L^\infty} \frac{1}{r^2} \frac{1}{\tau(x)^2}.$$

Moreover the rate is sharp along the event horizon in general: for $x \in \mathcal{H}^+$

$$\int_{\mathcal{P}_{x}} f \, d\mu_{x} \geq C\left(\min_{(x,p)\in\mathcal{B}_{\delta}} f_{0}(x,p)\right) \frac{1}{\tau(x)^{2}},$$

for an appropriate choice of constant $C = C(supp(f_0), m, \delta)$.

(日) (四) (日) (日) (日)

Assume f solves the massless Vlasov equation on ERN and $f_0 = f|_{\Sigma_0}$ is smooth and compactly supported. Then for all $x \in M$ with $\tau(x) > 1$

$$\int_{\mathcal{P}_{x}} wf \ d\mu_{x} \leq C \|f_{0}\|_{L^{\infty}} \frac{1}{r^{2}} \frac{1}{\tau(x)^{2}}.$$

Moreover the rate is sharp along the event horizon in general: for $x \in \mathcal{H}^+$

$$\int_{\mathcal{P}_x} f \, d\mu_x \geq C\left(\min_{(x,p)\in \mathcal{B}_\delta} f_0(x,p)\right) \frac{1}{\tau(x)^2},$$

for an appropriate choice of constant $C = C(\text{supp}(f_0), m, \delta)$. Furthermore if f_0 is supported away from \mathcal{H}^+ then we recover an exponential rate of decay:

$$\int_{\mathcal{P}_x} wf \, d\mu_x \leq C \|f_0\|_{L^\infty} \frac{1}{r^2} e^{-c\tau(x)}.$$

(日) (四) (日) (日) (日)

Assume f solves the massless Vlasov equation on ERN and $f_0 = f|_{\Sigma_0}$ is smooth and compactly supported. Then for all $x \in M$ with $\tau(x) > 1$

$$\int_{\mathcal{P}_x} wf \ d\mu_x \leq C \|f_0\|_{L^\infty} \frac{1}{r^2} \frac{1}{\tau(x)^2}.$$

Moreover the rate is sharp along the event horizon in general: for $x \in \mathcal{H}^+$

$$\int_{\mathcal{P}_x} f \, d\mu_x \geq C\left(\min_{(x,p)\in \mathcal{B}_\delta} f_0(x,p)\right) \frac{1}{\tau(x)^2},$$

for an appropriate choice of constant $C = C(supp(f_0), m, \delta)$. Furthermore if f_0 is supported away from \mathcal{H}^+ then we recover an exponential rate of decay:

$$\int_{\mathcal{P}_x} wf \, d\mu_x \leq C \|f_0\|_{L^\infty} \frac{1}{r^2} e^{-c\tau(x)}$$

Note: For every $\kappa, \lambda > 2$ there exists w = w(p) such that the associated moment decays at the faster rate $r^{-\lambda}\tau(x)^{-\kappa}$ and this rate is sharp along the event horizon.

We denote by T the timelike Killing derivative on **ERN**. We use (t^*, r) -coordinates:

Theorem 3 (Non-decay for transversal derivatives on extremal RN)

Assume that f solves the massless Vlasov equation on ERN and f_0 is smooth and compactly supported. If we assume in addition that $Tf_0(x, p) \neq 0$ for $(x, p) \in \text{supp}(f_0)$ and $\mathcal{B}_{\delta} \subset \text{supp}(f_0)$ then for $x \in \mathcal{H}^+$ with $\tau(x) \gg 1$

$$\left|\partial_r \int_{S^2} T^{t^*t^*}[f] d\omega\right| \geq C \left|\min_{(x,p)\in \mathcal{B}_{\delta}} |Tf_0(x,p)|\right|,$$

for an appropriate constant $C = C(supp(f_0), m, \delta)$.

<ロト < 回 > < 回 > < 回 > < 回 >

Introduction

2 Preliminaries

3 Main results

4 Related results

5 Sketch of the proof

6 Summary

Let $\Box_g \psi = 0$ with compact data

Let $\Box_g \psi = 0$ with compact data and consider the energy–momentum tensor

$$T_W^{\mu
u}[\psi] =
abla^\mu \psi
abla^
u \psi - rac{1}{2} g^{\mu
u} (g^{lphaeta}
abla_lpha \psi
abla_eta \psi).$$

Let $\Box_g \psi = 0$ with compact data and consider the energy–momentum tensor

$$T_W^{\mu\nu}[\psi] = \nabla^{\mu}\psi\nabla^{\nu}\psi - \frac{1}{2}g^{\mu\nu}(g^{\alpha\beta}\nabla_{\alpha}\psi\nabla_{\beta}\psi).$$

We want to compare $T_W^{t^*t^*}[\psi]$ to $T^{t^*t^*}[f] = \int_{\mathcal{P}_x} (p^{t^*})^2 f \, d\mu_x$ in a region of bounded r.

Let $\Box_g \psi = 0$ with compact data and consider the energy–momentum tensor

$$T^{\mu
u}_W[\psi] =
abla^\mu \psi
abla^
u \psi - rac{1}{2} g^{\mu
u} (g^{lphaeta}
abla_lpha \psi
abla_eta \psi).$$

We want to compare $T_W^{t^*t^*}[\psi]$ to $T^{t^*t^*}[f] = \int_{\mathcal{P}_x} (p^{t^*})^2 f \, d\mu_x$ in a region of bounded r.

Decay on subextremal RN: Angelopoulos-Aretakis-Gajic ('18,'21)

$$\mathsf{T}^{t^*t^*}_W[\psi] \lesssim rac{1}{ au(x)^8}$$

Let $\Box_g \psi = 0$ with compact data and consider the energy-momentum tensor

$$T^{\mu
u}_W[\psi] =
abla^\mu \psi
abla^
u \psi - rac{1}{2} g^{\mu
u} (g^{lphaeta}
abla_lpha \psi
abla_eta \psi).$$

We want to compare $T_W^{t^*t^*}[\psi]$ to $T^{t^*t^*}[f] = \int_{\mathcal{P}_x} (p^{t^*})^2 f \, d\mu_x$ in a region of bounded r.

 $\mathsf{T}_W^{t^*t^*}[\psi] \lesssim \frac{1}{\tau(x)^8}$

Decay on subextremal RN: Angelopoulos-Aretakis-Gajic ('18,'21)

The Aretakis instability: Aretakis ('11) showed that on ERN as $au(x) o \infty$

$$\int_{S^2} \left. T_W^{t^*t^*}[\psi] \, d\omega \right|_{r=m} \to \frac{4\pi}{m^6} (H_0[\psi])^2$$

where the horizon charge $H_0[\psi] = \frac{m^2}{4\pi} \int_{S^2} (\partial_{t^*} - \partial_r) (r\psi)|_{r=m} d\omega$ is conserved along \mathcal{H}^+ .

イロト イヨト イヨト ・ ヨト

Let $\Box_g \psi = 0$ with compact data and consider the energy-momentum tensor

$$T^{\mu
u}_W[\psi] =
abla^\mu \psi
abla^
u \psi - rac{1}{2} g^{\mu
u} (g^{lphaeta}
abla_lpha \psi
abla_eta \psi).$$

We want to compare $T_W^{t^*t^*}[\psi]$ to $T^{t^*t^*}[f] = \int_{\mathcal{P}_x} (p^{t^*})^2 f \, d\mu_x$ in a region of bounded r.

 $\mathsf{T}^{t^*t^*}_W[\psi] \lesssim rac{1}{ au(x)^8}$

Decay on subextremal RN: Angelopoulos-Aretakis-Gajic ('18,'21)

The Aretakis instability: Aretakis ('11) showed that on ERN as $au(x) o \infty$

$$\int_{S^2} \left. T_W^{t^*t^*}[\psi] \, d\omega \right|_{r=m} \to \frac{4\pi}{m^6} (H_0[\psi])^2$$

where the horizon charge $H_0[\psi] = \frac{m^2}{4\pi} \int_{S^2} (\partial_{t^*} - \partial_r) (r\psi)|_{r=m} d\omega$ is conserved along \mathcal{H}^+ .

$$\int_{S^2} \left. \mathcal{T}_W^{t^*t^*}[\partial_r \psi] \, d\omega \right|_{r=m} \gtrsim \tau(x)^2 (\mathcal{H}_0[\psi])^2$$

・ロト ・四ト ・ヨト ・ヨト

• Aretakis ('12): boundedness and decay under the assumption of axisymmetry

• Aretakis ('12): boundedness and decay under the assumption of **axisymmetry** Outside of axisymmetry, little is known, except ...

• Gajic (forthcoming): new instability result for higher mode solutions

• Aretakis ('12): boundedness and decay under the assumption of **axisymmetry** Outside of axisymmetry, little is known, except ...

• Gajic (forthcoming): new instability result for higher mode solutions

Results on massless Vlasov:

• Aretakis ('12): boundedness and decay under the assumption of **axisymmetry** Outside of axisymmetry, little is known, except ...

• Gajic (forthcoming): new instability result for higher mode solutions

Results on massless Vlasov:

• Andersson-Blue-Joudioux (2018): integrated energy decay estimate for massless Vlasov on slowly rotating Kerr

• Aretakis ('12): boundedness and decay under the assumption of axisymmetry Outside of axisymmetry, little is known, except ...

• Gajic (forthcoming): new instability result for higher mode solutions

Results on massless Vlasov:

- Andersson-Blue-Joudioux (2018): integrated energy decay estimate for massless Vlasov on slowly rotating Kerr
- Bigorgne (2020): inverse polynomial decay for moments of solutions to the massless Vlasov equation on Schwarzschild using the r^{p} -method of Dafermos-Rodnianski

• Aretakis ('12): boundedness and decay under the assumption of axisymmetry Outside of axisymmetry, little is known, except ...

• Gajic (forthcoming): new instability result for higher mode solutions

Results on massless Vlasov:

- Andersson-Blue-Joudioux (2018): integrated energy decay estimate for massless Vlasov on slowly rotating Kerr
- Bigorgne (2020): inverse polynomial decay for moments of solutions to the massless Vlasov equation on Schwarzschild using the r^{p} -method of Dafermos-Rodnianski
- Velozo (forthcoming): nonlinear stability of Schwarzschild as a solution to coupled spherically symmetric massless Einstein–Vlasov system

Introduction

2 Preliminaries

3 Main results

4 Related results

Sketch of the proof

6 Summary

Can we estimate $\tau(\gamma(s))$ in terms of r(0), r(s) and conserved quantities?

Can we estimate $\tau(\gamma(s))$ in terms of r(0), r(s) and conserved quantities? **Recall:** geodesic flow on RN is completely integrable (Jacobi elliptic functions).

Instead of solving the geodesic equations directly:

$$t^*(s_2) - t^*(s_1) = \int_{s_1}^{s_2} \frac{dt^*}{ds} ds = \int_{s_1}^{s_2} p^{t^*} ds = \int_{r_1}^{r_2} \frac{p^{t^*}}{p^r} dr.$$

$$t^*(s_2) - t^*(s_1) = \int_{s_1}^{s_2} \frac{dt^*}{ds} \, ds = \int_{s_1}^{s_2} p^{t^*} \, ds = \int_{r_1}^{r_2} \frac{p^{t^*}}{p^r} \, dr.$$

We define a conserved quantity, the trapping parameter $arepsilon:\mathcal{P}
ightarrow [-\infty,1]$

$$\varepsilon = 1 - \frac{L^2}{c(q,m)E^2}.$$

・ロト ・四ト ・ヨト ・ヨト

$$t^{*}(s_{2}) - t^{*}(s_{1}) = \int_{s_{1}}^{s_{2}} \frac{dt^{*}}{ds} ds = \int_{s_{1}}^{s_{2}} p^{t^{*}} ds = \int_{r_{1}}^{r_{2}} \underbrace{\frac{p^{t^{*}}}{p^{r}}}_{\sim F(r,\varepsilon)} dr.$$

We define a conserved quantity, the trapping parameter $\varepsilon:\mathcal{P}\rightarrow [-\infty,1]$

$$\varepsilon = 1 - \frac{L^2}{c(q,m)E^2}.$$

<ロ> <四> <ヨ> <ヨ>

$$t^{*}(s_{2}) - t^{*}(s_{1}) = \int_{s_{1}}^{s_{2}} \frac{dt^{*}}{ds} ds = \int_{s_{1}}^{s_{2}} p^{t^{*}} ds = \int_{r_{1}}^{r_{2}} \frac{p^{t^{*}}}{p^{r}} dr.$$

We define a conserved quantity, the trapping parameter $\varepsilon:\mathcal{P}\rightarrow [-\infty,1]$

$$\varepsilon = 1 - \frac{L^2}{c(q,m)E^2}.$$

Estimating this integral and showing that in the asymptotically flat region geodesics essentially propagate along constant τ -hypersurfaces we find

イロン イロン イヨン イヨン

$$t^{*}(s_{2}) - t^{*}(s_{1}) = \int_{s_{1}}^{s_{2}} \frac{dt^{*}}{ds} ds = \int_{s_{1}}^{s_{2}} p^{t^{*}} ds = \int_{r_{1}}^{r_{2}} \frac{p^{t^{*}}}{p^{r}} dr.$$

We define a conserved quantity, the trapping parameter $\varepsilon:\mathcal{P}\rightarrow [-\infty,1]$

$$\varepsilon = 1 - rac{L^2}{c(q,m)E^2}.$$

Estimating this integral and showing that in the asymptotically flat region geodesics essentially propagate along constant τ -hypersurfaces we find

$$au(\gamma(s)) \lesssim 1 + \left|\log|arepsilon| + \mathfrak{s} \left|\log\left(1+|arepsilon|)\Omega^2(r(0))
ight|,$$

where $\mathfrak{s} = 1 + \operatorname{sgn}(p^r(0))$.

Next we estimate the momentum support supp $(f(x, \cdot))$ with $\tau(x) \gg 1$.

・ロト ・回ト ・ヨト ・ヨト

Sketch of the proof: the subextremal case

Next we estimate the momentum support supp $(f(x, \cdot))$ with $\tau(x) \gg 1$. Using the time estimate together with the assumption of initially compact support:

 $\mathrm{supp}\,(f)\cap\{(x,p)\in\mathcal{P}\mid au(x)\gg1\}\subset\mathfrak{Q}_1\cup\mathfrak{Q}_2$

Sketch of the proof: the subextremal case

Next we estimate the momentum support supp $(f(x, \cdot))$ with $\tau(x) \gg 1$. Using the time estimate together with the assumption of initially compact support:

 $\mathsf{supp}\,(f)\cap\{(x,p)\in\mathcal{P}\mid au(x)\gg1\}\subset\mathfrak{Q}_1\cup\mathfrak{Q}_2$

• • • • • • • • • •

Sketch of the proof: the subextremal case

Next we estimate the momentum support supp $(f(x, \cdot))$ with $\tau(x) \gg 1$. Using the time estimate together with the assumption of initially compact support:

 $\mathsf{supp}\,(f)\cap\{(x,p)\in\mathcal{P}\mid au(x)\gg1\}\subset\mathfrak{Q}_1\cup\mathfrak{Q}_2$

$$\begin{split} \int_{\mathcal{P}_{x}} & \text{wf } d\mu_{x} \leq \Big(\max_{\text{supp}(f)} |w|\Big) \|f_{0}\|_{L^{\infty}} \Big[\operatorname{vol}(\mathfrak{Q}_{1,x}) + \operatorname{vol}(\mathfrak{Q}_{2,x}) \Big] \\ & \lesssim \|f_{0}\|_{L^{\infty}} e^{-c\tau(x)}. \end{split}$$

< □ > < 同 > < 回 > < Ξ > < Ξ

How does the geodesic flow change in the extremal case? Momentum support?

・ロト ・四ト ・日ト ・日

How does the geodesic flow change in the extremal case? Momentum support?

Trapping at the photon sphere: \mathfrak{Q}_1 is virtually identical.
Trapping at the photon sphere: \mathfrak{Q}_1 is virtually identical.

Trapping at the event horizon: \mathfrak{Q}_2 is geometrically identical, however:

イロト イロト イヨト イヨ

Trapping at the photon sphere: \mathfrak{Q}_1 is virtually identical.

Trapping at the event horizon: \mathfrak{Q}_2 is geometrically identical, however:

• \mathfrak{Q}_2 contains geodesics which are slowly infalling towards \mathcal{H}^+ .

・ロト ・日 ・ ・ ヨト ・ ヨ

Trapping at the photon sphere: \mathfrak{Q}_1 is virtually identical.

Trapping at the event horizon: \mathfrak{Q}_2 is geometrically identical, however:

- \mathfrak{Q}_2 contains geodesics which are slowly infalling towards \mathcal{H}^+ .
- Volume is no longer exponentially small: $vol(\mathfrak{Q}_{2,x}) \sim \frac{1}{\tau(x)^2}$.

Trapping at the photon sphere: \mathfrak{Q}_1 is virtually identical.

Trapping at the event horizon: \mathfrak{Q}_2 is geometrically identical, however:

- \mathfrak{Q}_2 contains geodesics which are slowly infalling towards \mathcal{H}^+ .
- Volume is no longer exponentially small: $vol(\mathfrak{Q}_{2,x}) \sim \frac{1}{\tau(x)^2}$.
- Even though both p^r and $p \neq$ are small as $\tau(x) \to \infty$:

$$p^{t^*} \lesssim \min\left(rac{1}{\Omega^2}rac{m^2}{(au(x)- au_0)^2},1
ight).$$

Trapping at the photon sphere: \mathfrak{Q}_1 is virtually identical.

Trapping at the event horizon: \mathfrak{Q}_2 is geometrically identical, however:

- \mathfrak{Q}_2 contains geodesics which are slowly infalling towards \mathcal{H}^+ .
- Volume is no longer exponentially small: vol(Ω_{2,x}) ~ ¹/_{τ(x)²}.
- Even though both p^r and $p \not =$ are small as $\tau(x) \to \infty$:

$$p^{t^*} \lesssim \min\left(rac{1}{\Omega^2}rac{m^2}{(au(x)- au_0)^2},1
ight).$$

In fact: construct family of geodesics which cross \mathcal{H}^+ at arbitrarily late times while satisfying $p^{t^*} \sim 1$ on $\mathcal{H}^+ \rightsquigarrow$ allows to define \mathcal{B} .

イロト イヨト イヨト イヨト

$$\left(\left.\partial_{r}\int_{S^{2}}T^{t^{*}t^{*}}[f]\,d\omega\right)\right|_{r=m}=\int_{S^{2}}T^{t^{*}t^{*}}\left[\frac{p^{t^{*}}}{|p'|}\partial_{t^{*}}f\right]\,d\omega\bigg|_{r=m}+\mathcal{E}$$

with $\mathcal{E} \lesssim \tau(x)^{-2}$.

$$\left(\left.\partial_{r}\int_{S^{2}}T^{t^{*}t^{*}}[f]\,d\omega\right)\right|_{r=m}=\int_{S^{2}}T^{t^{*}t^{*}}\left[\frac{p^{t^{*}}}{|p^{r}|}\partial_{t^{*}}f\right]\,d\omega\bigg|_{r=m}+\mathcal{E}$$

with $\mathcal{E} \lesssim \tau(x)^{-2}$. Next we split the support into the sets \mathfrak{Q}_1 and \mathfrak{Q}_2 , and find

$$T^{t^*t^*}\left[\frac{p^{t^*}}{|p^r|}\partial_{t^*}f\right] = \int_{\mathfrak{Q}_{2,x}} \frac{(p^{t^*})^3}{|p^r|}\partial_{t^*}f\,d\mu_x + \mathcal{E}.$$

$$\left(\left.\partial_{r}\int_{S^{2}}T^{t^{*}t^{*}}[f]\,d\omega\right)\right|_{r=m}=\int_{S^{2}}T^{t^{*}t^{*}}\left[\frac{p^{t^{*}}}{|p'|}\partial_{t^{*}}f\right]\,d\omega\bigg|_{r=m}+\mathcal{E}$$

with $\mathcal{E} \lesssim \tau(x)^{-2}$. Next we split the support into the sets \mathfrak{Q}_1 and \mathfrak{Q}_2 , and find

$$T^{t^*t^*}\left[\frac{p^{t^*}}{|p'|}\partial_{t^*}f\right] = \int_{\mathfrak{Q}_{2,x}} \frac{(p^{t^*})^3}{|p'|}\partial_{t^*}f\,d\mu_x + \mathcal{E}.$$

Therefore we find

$$\left| \int_{\mathfrak{Q}_{2,x}} \frac{(\rho^{t^*})^3}{|\rho^r|} \partial_{t^*} f \, d\mu_x \right| \gtrsim \tau(x)^2 \left(\min_{\mathcal{B}} |\partial_{t^*} f_0| \right) \operatorname{vol}(\mathfrak{Q}_{2,x})$$
$$\gtrsim \min_{\mathcal{B}} |\partial_{t^*} f_0| \,.$$

Introduction

2 Preliminaries

3 Main results

4 Related results

Sketch of the proof

6 Summary

メロト メタト メヨト メヨト

イロト イヨト イヨト イヨト

Exponential decay for moments in subextremal RN

メロト メタト メヨト メヨト

- Exponential decay for moments in subextremal RN
- **②** Inverse polynomial decay, sharp along \mathcal{H}^+ on ERN

- Exponential decay for moments in subextremal RN
- **(2)** Inverse polynomial decay, sharp along \mathcal{H}^+ on **ERN**
- **③** Non-decay of transversal derivatives of moments along \mathcal{H}^+ on **ERN**

イロト イヨト イヨト イヨ