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Introduction

One of the key predictions of general relativity is the existence of black holes.

Explicit black hole solutions:

Schwarzschild

Reissner–Nordström

Kerr

Recently tremendous progress on stability of subextremal black holes, e.g.

Dafermos–Holzegel–Rodnianski–Taylor (’22), Giorgi–Klainerman–Szeftel (’22),
Angelopoulos–Aretakis–Gajic (’16-’21), Shlapentokh-Rothman–Teixeira da Costa (’20), Häfner–Hintz–Vasy (’19),
Dafermos–Holzegel–Rodnianski (’19), Dafermos–Rodnianski–Shlapentokh-Rothman (’16), . . .
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Introduction

Many open problems remain in the extremal limit. For extremal Kerr two key geometric
phenomena complicate its study:

1 degenerate red-shift effect

Leads to instability for wave equation*
Already present for ERN

2 coupling of trapping and superradiance

Not even understood on the level of massless
linear fields

Precedent for studying the massless Vlasov equation to understand phenomena which
are not well understood for other massless linear fields: Moschidis (’18,’20),
Poisson–Israel (’89,’90)
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The Reissner–Nordström (RN) spacetime

Reissner–Nordström black hole of mass m and electrical charge |q| ≤ m:

g = −Ω2dt2 + Ω−2dr 2 + r 2dω2, Ω2 = 1− 2m

r
+

q2

r 2

The solution is subextremal when |q| < m and extremal when |q| = m.
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The massless Vlasov equation

The massless Vlasov equation is a kinetic particle model describing a distribution of
collisionless particles moving at the speed of light in a spacetime (M, g).

Coordinates {xµ} on M induce conjugate coordinates {xµ, pµ} on TM by representing
each p ∈ TxM as p = pµ∂µ|x .

The mass-shell is defined by

P =
{

(x , p) ∈ TM : g(x)(p, p) = 0, p is future-directed
}
.

A function f : P → R≥0 solves the massless Vlasov equation if f is conserved along the
geodesic flow or equivalently

X(f) = 0, X = pµ∂µ − Γµαβp
αpβ∂pµ

We define moments of f for suitable polynomially-in-p bounded weights w : P → R∫
Px

wf dµx , e.g.Tµν [f ] =

∫
Px

pµpν f dµx .
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Main results: subextremal Reissner–Nordström

Theorem 1 (Exponential decay on subextremal RN)

Assume f solves the massless Vlasov equation on subextremal RN and the initial
distribution f0 : P|Σ0 → [0,∞) is smooth and compactly supported. Then for all x ∈ M
with τ(x) ≥ 0 ∫

Px

wf dµx ≤ C‖f0‖L∞
1

r 2
e−cτ(x),

for an appropriate choice of C = C(w , supp (f0),m, q) and c = c(m, q).

Note:

C = C(w , supp (f0),m, q) and c = c(m, q), degenerate as |q| → m.

For every κ > 0, λ > 2 there exists w = w(p) such that the associated moment
decays at the faster rate r−λe−κτ(x).
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Interlude: the sets Bδ

The one-parameter family of sets Bδ ⊂ P|Σ0 :

Compact and full measure volBδ ∼ δ2.

Approximate the null generators of H+ as δ → 0.

Explicitly characterised.

(Imperial College London) Massless Vlasov on RN 21.10.2022 11 / 24



Interlude: the sets Bδ

The one-parameter family of sets Bδ ⊂ P|Σ0 :

Compact and full measure volBδ ∼ δ2.

Approximate the null generators of H+ as δ → 0.

Explicitly characterised.

(Imperial College London) Massless Vlasov on RN 21.10.2022 11 / 24



Interlude: the sets Bδ

The one-parameter family of sets Bδ ⊂ P|Σ0 :

Compact and full measure volBδ ∼ δ2.

Approximate the null generators of H+ as δ → 0.

Explicitly characterised.

(Imperial College London) Massless Vlasov on RN 21.10.2022 11 / 24



Interlude: the sets Bδ

The one-parameter family of sets Bδ ⊂ P|Σ0 :

Compact and full measure volBδ ∼ δ2.

Approximate the null generators of H+ as δ → 0.

Explicitly characterised.

(Imperial College London) Massless Vlasov on RN 21.10.2022 11 / 24



Interlude: the sets Bδ

The one-parameter family of sets Bδ ⊂ P|Σ0 :

Compact and full measure volBδ ∼ δ2.

Approximate the null generators of H+ as δ → 0.

Explicitly characterised.

(Imperial College London) Massless Vlasov on RN 21.10.2022 11 / 24



Main results: extremal Reissner–Nordström I

Theorem 2 (Polynomial decay on extremal RN)

Assume f solves the massless Vlasov equation on ERN and f0 = f |Σ0 is smooth and
compactly supported.

Then for all x ∈ M with τ(x) > 1∫
Px

wf dµx ≤ C‖f0‖L∞
1

r 2

1

τ(x)2
.

Moreover the rate is sharp along the event horizon in general: for x ∈ H+∫
Px

f dµx ≥ C

(
min

(x,p)∈Bδ
f0(x , p)

)
1

τ(x)2
,

for an appropriate choice of constant C = C(supp (f0),m, δ). Furthermore if f0 is
supported away from H+ then we recover an exponential rate of decay:∫

Px

wf dµx ≤ C‖f0‖L∞
1

r 2
e−cτ(x).

Note: For every κ, λ > 2 there exists w = w(p) such that the associated moment decays
at the faster rate r−λτ(x)−κ and this rate is sharp along the event horizon.
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Main results: extremal Reissner–Nordström II

We denote by T the timelike Killing derivative on ERN. We use (t∗, r)-coordinates:

Theorem 3 (Non-decay for transversal derivatives on extremal RN)

Assume that f solves the massless Vlasov equation on ERN and f0 is smooth and
compactly supported. If we assume in addition that Tf0(x , p) 6= 0 for (x , p) ∈ supp (f0)
and Bδ ⊂ supp (f0) then for x ∈ H+ with τ(x)� 1∣∣∣∣∂r ∫

S2

T t∗t∗ [f ] dω

∣∣∣∣ ≥ C

∣∣∣∣ min
(x,p)∈Bδ

|Tf0(x , p)|
∣∣∣∣ ,

for an appropriate constant C = C(supp (f0),m, δ).
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Related results: the Aretakis instability

Let 2gψ = 0 with compact data

and consider the energy–momentum tensor

Tµν
W [ψ] = ∇µψ∇νψ − 1

2
gµν(gαβ∇αψ∇βψ).

We want to compare T t∗t∗
W [ψ] to T t∗t∗ [f ] =

∫
Px

(pt∗)2f dµx in a region of bounded r .

Decay on subextremal RN: Angelopoulos–Aretakis–Gajic (’18,’21)

Tt∗t∗
W [ψ] . 1

τ(x)8

The Aretakis instability: Aretakis (’11) showed that on ERN as τ(x)→∞

∫
S2 T

t∗t∗
W [ψ] dω

∣∣∣
r=m
→ 4π

m6 (H0[ψ])2

where the horizon charge H0[ψ] = m2

4π

∫
S2 (∂t∗ − ∂r )(rψ)|r=m dω is conserved along H+.

∫
S2 T

t∗t∗
W [∂rψ] dω

∣∣∣
r=m

& τ(x)2(H0[ψ])2

(Imperial College London) Massless Vlasov on RN 21.10.2022 15 / 24



Related results: the Aretakis instability

Let 2gψ = 0 with compact data and consider the energy–momentum tensor

Tµν
W [ψ] = ∇µψ∇νψ − 1

2
gµν(gαβ∇αψ∇βψ).

We want to compare T t∗t∗
W [ψ] to T t∗t∗ [f ] =

∫
Px

(pt∗)2f dµx in a region of bounded r .

Decay on subextremal RN: Angelopoulos–Aretakis–Gajic (’18,’21)

Tt∗t∗
W [ψ] . 1

τ(x)8

The Aretakis instability: Aretakis (’11) showed that on ERN as τ(x)→∞

∫
S2 T

t∗t∗
W [ψ] dω

∣∣∣
r=m
→ 4π

m6 (H0[ψ])2

where the horizon charge H0[ψ] = m2

4π

∫
S2 (∂t∗ − ∂r )(rψ)|r=m dω is conserved along H+.

∫
S2 T

t∗t∗
W [∂rψ] dω

∣∣∣
r=m

& τ(x)2(H0[ψ])2

(Imperial College London) Massless Vlasov on RN 21.10.2022 15 / 24



Related results: the Aretakis instability

Let 2gψ = 0 with compact data and consider the energy–momentum tensor

Tµν
W [ψ] = ∇µψ∇νψ − 1

2
gµν(gαβ∇αψ∇βψ).

We want to compare T t∗t∗
W [ψ] to T t∗t∗ [f ] =

∫
Px

(pt∗)2f dµx in a region of bounded r .

Decay on subextremal RN: Angelopoulos–Aretakis–Gajic (’18,’21)

Tt∗t∗
W [ψ] . 1

τ(x)8

The Aretakis instability: Aretakis (’11) showed that on ERN as τ(x)→∞

∫
S2 T

t∗t∗
W [ψ] dω

∣∣∣
r=m
→ 4π

m6 (H0[ψ])2

where the horizon charge H0[ψ] = m2

4π

∫
S2 (∂t∗ − ∂r )(rψ)|r=m dω is conserved along H+.

∫
S2 T

t∗t∗
W [∂rψ] dω

∣∣∣
r=m

& τ(x)2(H0[ψ])2

(Imperial College London) Massless Vlasov on RN 21.10.2022 15 / 24



Related results: the Aretakis instability

Let 2gψ = 0 with compact data and consider the energy–momentum tensor

Tµν
W [ψ] = ∇µψ∇νψ − 1

2
gµν(gαβ∇αψ∇βψ).

We want to compare T t∗t∗
W [ψ] to T t∗t∗ [f ] =

∫
Px

(pt∗)2f dµx in a region of bounded r .

Decay on subextremal RN: Angelopoulos–Aretakis–Gajic (’18,’21)

Tt∗t∗
W [ψ] . 1

τ(x)8

The Aretakis instability: Aretakis (’11) showed that on ERN as τ(x)→∞

∫
S2 T

t∗t∗
W [ψ] dω

∣∣∣
r=m
→ 4π

m6 (H0[ψ])2

where the horizon charge H0[ψ] = m2

4π

∫
S2 (∂t∗ − ∂r )(rψ)|r=m dω is conserved along H+.

∫
S2 T

t∗t∗
W [∂rψ] dω

∣∣∣
r=m

& τ(x)2(H0[ψ])2

(Imperial College London) Massless Vlasov on RN 21.10.2022 15 / 24



Related results: the Aretakis instability

Let 2gψ = 0 with compact data and consider the energy–momentum tensor

Tµν
W [ψ] = ∇µψ∇νψ − 1

2
gµν(gαβ∇αψ∇βψ).

We want to compare T t∗t∗
W [ψ] to T t∗t∗ [f ] =

∫
Px

(pt∗)2f dµx in a region of bounded r .

Decay on subextremal RN: Angelopoulos–Aretakis–Gajic (’18,’21)

Tt∗t∗
W [ψ] . 1

τ(x)8

The Aretakis instability: Aretakis (’11) showed that on ERN as τ(x)→∞

∫
S2 T

t∗t∗
W [ψ] dω

∣∣∣
r=m
→ 4π

m6 (H0[ψ])2

where the horizon charge H0[ψ] = m2

4π

∫
S2 (∂t∗ − ∂r )(rψ)|r=m dω is conserved along H+.

∫
S2 T

t∗t∗
W [∂rψ] dω

∣∣∣
r=m

& τ(x)2(H0[ψ])2

(Imperial College London) Massless Vlasov on RN 21.10.2022 15 / 24



Related results: the Aretakis instability

Let 2gψ = 0 with compact data and consider the energy–momentum tensor

Tµν
W [ψ] = ∇µψ∇νψ − 1

2
gµν(gαβ∇αψ∇βψ).

We want to compare T t∗t∗
W [ψ] to T t∗t∗ [f ] =

∫
Px

(pt∗)2f dµx in a region of bounded r .

Decay on subextremal RN: Angelopoulos–Aretakis–Gajic (’18,’21)

Tt∗t∗
W [ψ] . 1

τ(x)8

The Aretakis instability: Aretakis (’11) showed that on ERN as τ(x)→∞

∫
S2 T

t∗t∗
W [ψ] dω

∣∣∣
r=m
→ 4π

m6 (H0[ψ])2

where the horizon charge H0[ψ] = m2

4π

∫
S2 (∂t∗ − ∂r )(rψ)|r=m dω is conserved along H+.

∫
S2 T

t∗t∗
W [∂rψ] dω

∣∣∣
r=m

& τ(x)2(H0[ψ])2

(Imperial College London) Massless Vlasov on RN 21.10.2022 15 / 24



Related results: wave equation and Vlasov

The wave equation on extremal Kerr:

Aretakis (’12): boundedness and decay under the assumption of axisymmetry

Outside of axisymmetry, little is known, except . . .

Gajic (forthcoming): new instability result for higher mode solutions

Results on massless Vlasov:

Andersson–Blue–Joudioux (2018): integrated energy decay estimate for massless
Vlasov on slowly rotating Kerr

Bigorgne (2020): inverse polynomial decay for moments of solutions to the massless
Vlasov equation on Schwarzschild using the rp-method of Dafermos–Rodnianski

Velozo (forthcoming): nonlinear stability of Schwarzschild as a solution to coupled
spherically symmetric massless Einstein–Vlasov system
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Sketch of the proof: the subextremal case

We begin by considering the following task: Suppose γ : [0, s]→ M is a null geodesic
such that γ(0) ∈ Σ0.

Can we estimate τ(γ(s)) in terms of r(0), r(s) and conserved quantities?

Recall: geodesic flow on RN is completely integrable (Jacobi elliptic functions).
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Sketch of the proof: the subextremal case

Instead of solving the geodesic equations directly:

let [s1, s2] ⊂ [0, s] such that pr 6= 0 on
[s1, s2] and estimate

We define a conserved quantity, the trapping parameter ε : P → [−∞, 1]

ε = 1− L2

c(q,m)E 2
.

Estimating this integral and showing that in the asymptotically flat region geodesics
essentially propagate along constant τ -hypersurfaces we find

τ(γ(s)) . 1 + |log |ε||+ s
∣∣∣log (1 + |ε|)Ω2(r(0))

∣∣∣ ,
where s = 1 + sgn(pr (0)).
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Sketch of the proof: the subextremal case

Next we estimate the momentum support supp (f (x , ·)) with τ(x)� 1.

Using the time
estimate together with the assumption of initially compact support:

supp (f ) ∩ {(x , p) ∈ P | τ(x)� 1} ⊂ Q1 ∪Q2
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estimate together with the assumption of initially compact support:

supp (f ) ∩ {(x , p) ∈ P | τ(x)� 1} ⊂ Q1 ∪Q2

∫
Px

wf dµx ≤
(

max
supp (f )

|w |
)
‖f0‖L∞

[
vol(Q1,x) + vol(Q2,x)

]
. ‖f0‖L∞e−cτ(x).
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Sketch of the proof: the extremal case

How does the geodesic flow change in the extremal case? Momentum support?

Trapping at the photon sphere: Q1 is virtually identical.

Trapping at the event horizon: Q2 is geometrically identical, however:

Q2 contains geodesics which are slowly infalling towards H+.

Volume is no longer exponentially small: vol(Q2,x) ∼ 1
τ(x)2 .

Even though both pr and �p are small as τ(x)→∞:

pt∗ . min

(
1

Ω2

m2

(τ(x)− τ0)2
, 1

)
.

In fact: construct family of geodesics which cross H+ at arbitrarily late times while
satisfying pt∗ ∼ 1 on H+ ; allows to define B.
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Sketch of the proof: Non-decay of transversal derivatives

Suppose f solves massless Vlasov on ERN. Then

(
∂r
∫
S2 T

t∗t∗ [f ] dω
)∣∣∣∣

r=m

=
∫
S2 T

t∗t∗
[
pt
∗

|pr |∂t∗ f
]
dω

∣∣∣∣
r=m

+ E

with E . τ(x)−2. Next we split the support into the sets Q1 and Q2, and find

T t∗t∗
[
pt∗

|pr |∂t
∗ f

]
=

∫
Q2,x

(pt∗)3

|pr | ∂t
∗ f dµx + E .

Therefore we find∣∣∣∣∣
∫
Q2,x

(pt∗)3

|pr | ∂t
∗ f dµx

∣∣∣∣∣ & τ(x)2
(

min
B
|∂t∗ f0|

)
vol(Q2,x)

& min
B
|∂t∗ f0| .
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Summary

To summarise the results:

1 Exponential decay for moments in subextremal RN

2 Inverse polynomial decay, sharp along H+ on ERN

3 Non-decay of transversal derivatives of moments along H+ on ERN
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