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L ecture overview

>  What are self supervised and contrastive learning?
> Examples and applications
> A closer look: normalisation, batch size, number of negative samples

» \What makes contrastive loss work so well?




Self-supervised learning

> ... Is a paradigm in machine learning where a model is trained using only the
data itself without access to external labels
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Why self-supervised learning?

> Data labelling is expensive and high-quality labeled data is limited

> Learning good representations facilitates downstream tasks with fewer labeled
data (few-shot learning) or transfer to new tasks

> Learning good representations enables better generalisation

> More closely imitates the way humans learn to classify objects
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Contrastive learning in the news

AIMODEL LEARNT
LANGUAGE BY SEEING
THE WORLD LIKE ABABY

A neural network taught itself to recognize objects
using the filmed experiences of a single infant.

Sam — here aged 18 months — wore a camera whose recordings trained an Al model.
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References: [Vong et al. | Science '24], [Article in Nature, ‘24]


https://www.science.org/doi/full/10.1126/science.adi1374?casa_token=VDUowcsXZ_UAAAAA:hMdUheaNmRbBOVrD179w1svBz1EEqoR_Ow0Z1t_gWaSs7q50WdrNuKRw1Nl_EULTsitDKNuuvypZqw
https://www.nature.com/articles/d41586-024-00288-1

Contrastive learning

Task: Which one is the ball?

INn the news
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References: [Vong et al. | Science '24], [Article in Nature, ‘24]

Linear Probe

CVCL

Linear Probe

CVCL
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https://www.science.org/doi/full/10.1126/science.adi1374?casa_token=VDUowcsXZ_UAAAAA:hMdUheaNmRbBOVrD179w1svBz1EEqoR_Ow0Z1t_gWaSs7q50WdrNuKRw1Nl_EULTsitDKNuuvypZqw
https://www.nature.com/articles/d41586-024-00288-1

Introduction: contrastive loss In pictures
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Defining contrastive loss in generality

f » Model f: X — Z (i.e. neural net)
~——

X /
Data space Latent space
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Defining contrastive loss in generality

f » Model f: X — Z (i.e. neural net)
~——

>/ equipped with similarity metric

» Common choices for Z and (:
X Z

/ N2
Data space Latent space 4 =1 d, ((z,2) = llz = Z/||

7'7
Z=5% ((z,7)=—"T-
Shorthand notation: d, , = {(f(x), f(¥)) zI[1Z
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Cosine similarity

» Recall S ={zeR||z]| =1} C |

» Cosine similarity ((z,z) = z' 7’

References: [Wiki article on cosine similarity]

Depiction of the 2-sphere S?
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https://en.wikipedia.org/wiki/Cosine_similarity

Cosine similarity

» Recall S ={zeR|||z]| =1} c R
» Cosine similarity ((z,z) = z' 7’

» Ifz=2,then{(z,7)) =1

» Ifz=—=2,then{(z,7) =—1

Depiction of the 2-sphere S?
19

References: [Wiki article on cosine similarity]



https://en.wikipedia.org/wiki/Cosine_similarity

Cosine similarity

> Most often, models output 7 € R4

20

References: [Wiki article on cosine similarity]
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Cosine similarity

> Most often, models output 7 € R4

> We first project to the sphere by mapping

z ard

((z,2') =

z— — ,
[z]] 2]z}

References: [Wiki article on cosine similarity]
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https://en.wikipedia.org/wiki/Cosine_similarity

Cosine similarity

> Most often, models output 7 € R4

> We first project to the sphere by mapping

T _/
e Yo
 — — C(Z,Z’):

2]} 2]z}

» d¢ : [—1,1] = [0,00) strictly increasing such that

1

D) = inf{J 7)1 ds |7 10.1] = S0, p(0) = 21D = 7'}

0

References: [Wiki article on cosine similarity]

22



https://en.wikipedia.org/wiki/Cosine_similarity

Cosine similarity

> Most often, models output 7 € R4

> We first project to the sphere by mapping

T _7
< $ £
z - ((z,2) = :
1z ][Izl
» d¢ : [—1,1] = [0,00) strictly increasing such that Riemannian (or geodesic) distance

1

Pz 7)) = inf | J

0

[7($)|ds | 72 [0.1] = ST p(0) = 2. (1) = z}‘/
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References: [Wiki article on cosine similarity]



https://en.wikipedia.org/wiki/Cosine_similarity

Defining contrastive loss in generality

~ Letp™(-|-)andp~ (-] -) betwo conditional distributions

24

References: [Tian | Neurips '22], [Schneider, Lee, Mathis | Nature ‘23]



https://proceedings.neurips.cc/paper_files/paper/2022/file/7b5c9cc08960df40615c1d858961eb8b-Paper-Conference.pdf
https://www.nature.com/articles/s41586-023-06031-6

Intuitively, for a given ‘anchor’ x:

Sampling from p+( - | x) allows us to generate
samples similar to x (‘positive examples’)

Defining contrastive loss in generality

Sampling from p~( - | x) allows us to generate
samples different from x (‘negative examples’)

- Letp™(-|-)and p~(- | -) be two conditional distributions <«
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- Letp™(-|-)and p~(- | -) be two conditional distributions <«

- Let ¢, w € C(R; R) be monotonically increasing

- Letd, , = {(f(x), f())
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Intuitively, for a given ‘anchor’ x:

Sampling from p+( - | x) allows us to generate
samples similar to x (‘positive examples’)

Defining contrastive loss in generality

Sampling from p~( - | x) allows us to generate
samples different from x (‘negative examples’)

- Letp™(-|-)and p~(- | -) be two conditional distributions <«

- Let ¢, w € C(R; R) be monotonically increasing

- Letd, , = {(f(x), f())

Zf] = Ex ~ p(x), y* ~pt(y | x), ¢ Z L (al’“y+ B dx’yl'_)
i=1

VsV ~ P (Y | x)

27

References: [Tian | Neurips '22], [Schneider, Lee, Mathis | Nature ‘23]



https://proceedings.neurips.cc/paper_files/paper/2022/file/7b5c9cc08960df40615c1d858961eb8b-Paper-Conference.pdf
https://www.nature.com/articles/s41586-023-06031-6

Specifying a contrastive loss in practice

» We need to make two choices:
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Specifying a contrastive loss in practice

> We need to make two choices:
1. An explicit choice for @ and y (and the latent space (Z, {))

2. A way to generate positive and negative examples: p™( - | x)and p~( - | x)
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Specifying a contrastive loss in practice

> We need to make two choices:
1. An explicit choice for @ and y (and the latent space (Z, {))
2. A way to generate positive and negative examples: p™( - | x)and p~( - | x)

> Let’s look at some common choices for ¢, wand p™(- | x), p~( - | x)!
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Triplet loss: Definition

» Let e > 0 (margin), n = 1 and ¢(x) = x, y(x) = max(0, x + €)

31

References: [Weinberger, Saul ‘09] [Schroff, Kalenichenko, Philbin | CVPR "'15]



https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf

Triplet loss: Definition

» Let e > 0 (margin), n = 1 and ¢(x) = x, y(x) = max(0, x + €)

Zz triplet[f | = =Xyt YT [maX(O, €+ dx,y+ — dx,y—)]
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References: [Weinberger, Saul ‘09] [Schroff, Kalenichenko, Philbin | CVPR "'15]



https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf

Triplet loss: Definition

» Let e > 0 (margin), n = 1 and ¢(x) = x, y(x) = max(0, x + €)

Zz triplet[f | = =Xyt YT [maX(O, €+ dx,y+ — dx,y—)]

» When using n > 1 negative examples, this generalises to the N-pair loss

n
gn—pair[f] — _x,y+,y1—,...,yn— Z maX(O’ € + dx,y+ o dx,yi—)
=1

33

References: [Weinberger, Saul ‘09] [Schroff, Kalenichenko, Philbin | CVPR "'15]



https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf

Triplet loss: Definition

» Let e > 0 (margin), n = 1 and ¢(x) = x, y(x) = max(0, x + €)

Zz triplet[f | = =Xyt YT [maX(O, €+ dx,y+ — dx,y—)]

» When using n > 1 negative examples, this generalises to the N-pair loss

n
gn—pair[f] — _x,y+,y1—,...,yn— Z maX(O’ € + dx,y+ o dx,yi—)
=1

> Let us develop some intuition for this loss...
34

References: [Weinberger, Saul ‘09] [Schroff, Kalenichenko, Philbin | CVPR "'15]
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Triplet loss: Intuition

» Why not use the simpler loss function Z[f] = _x,y+,y—[dx,y+ — dx,y_]? Intuitively:

d, - - d, - _
/‘]zy ) Trainin 9 > /(? )
f(:)d\~‘ o e

1) o)

>

Latent space
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Triplet loss: Intuition

» Why not use the simpler loss function Z[f] = _x,y+,y—[dx,y+ — dx,y_]? Intuitively:

d, - - d, - _
/‘]:y ) Training > /(? )
J m J (N

1) o)

>

Latent space

> Caveat: this loss is not lower-bounded (unless f is bounded)

= Divergence during train time
360

References: [Weinberger, Saul ‘09] [Schroff, Kalenichenko, Philbin | CVPR "'15]
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Triplet loss: Intuition

~ Instead, use a hinge loss £ = d, .+ + max(0, € — d, ,-), where € > 0

>

max(0, € — d)

37

References: [Weinberger, Saul ‘09] [Schroff, Kalenichenko, Philbin | CVPR "'15]



https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
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Triplet loss: Intuition

> Now £ > 0 and once d, - > €, the pair (x, y~) does not contribute to the loss

d,,- O
/J?y_) Tang P
‘ ﬂ’m. ) ire

>

Latent space
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Triplet loss: Intuition

> Now £ > 0 and once d, - > €, the pair (x, y~) does not contribute to the loss

d,,- O
/]?y_) Tang P
‘ ﬂ’m. ) ire

>

Latent space

» Commonly, model outputs are normalised and cosine similarity is used

39

References: [Weinberger, Saul ‘09] [Schroff, Kalenichenko, Philbin | CVPR "'15]



https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf

INfONCE loss: Definition

» Fore > 0 and v > 0 (temperature): ¢(x) = tlog(e + x), w(x) = eV

o [ ] | €Xp(—dx,y+/f)
= O 4. _ 1 —10 -
NGB = Frareor | WO Cepd el + X e dy /0

40

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]



https://arxiv.org/abs/1807.03748
http://proceedings.mlr.press/v119/chen20j.html
https://jxmo.io/posts/nce

INfONCE loss: Interpretation

> Problem: Given a reference point x ~ p(x) and n + 1 samples
{X{, Xy, ..., X,,1} Where x5 ~ p™( - | x) is one positive sample and

x;~p-(+),I # I are ‘noise’ samples. Identify the positive sample.

41

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]
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INfONCE loss: Interpretation

> Problem: Given a reference point x ~ p(x) and n + 1 samples

{X{, %y, ..., X,,1} Where x5 ~ p™( - | x) is one positive sample and

x;~p-(+),I # I are ‘noise’ samples. Identify the positive sample.

» The probability that the i-th sample is the positive one is

—+ _ p+(xl-\x)
P(i =+ |x) = M _ o)
ZJ-PJF(Xj‘X)Hk#jp‘(xk) Z P+(xj‘x)

J p~(x;)

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]
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https://arxiv.org/abs/1807.03748
http://proceedings.mlr.press/v119/chen20j.html
https://jxmo.io/posts/nce

INfONCE loss: Interpretation

P+(xi | x)

Let us introduce the abbreviation g(x;; x) =
p~(x;)

>

> The cross entropy of identifying the positive sample correctly is then

g(Xg; X)

— [—logt (J =+ Ix)] = [, | —log

X

43

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]



https://arxiv.org/abs/1807.03748
http://proceedings.mlr.press/v119/chen20j.html
https://jxmo.io/posts/nce

INfONCE loss: Interpretation

> If we identify exp(—dx,y/ 7) = g(y; x) we see cross entropy = INfoNCE loss

with e = 1
andp~(-|x)=p~(-)

44

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]
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INfONCE loss: Interpretation

> If we identify exp(—dx,y/ 7) = g(y; x) we see cross entropy = INfoNCE loss

with e = 1
andp~(-|x)=p~(-)

> Minimising InfoNCE loss <= maximising the probability of correctly identifying
a positive sample among a set of n negative and one positive samples.

45

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]
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INfONCE loss: Interpretation

> If we identify exp(—dx,y/ 7) = g(y; x) we see cross entropy = INfoNCE loss

with e = 1 J

andp~(-|x)=p~(-)

> Minimising InfoNCE loss <= maximising the probability of correctly identifying
a positive sample among a set of n negative and one positive samples.

pT(y|[x)
p=(y)

., We can think of our model as learning the density ratio exp(—d, ,/7) =

46

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]
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INfONCE loss: Interpretation #2

px|y)
p(x)

Mutual information I(X | ¥V) = Z p(x,y) log
X,y

>

47

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]



https://arxiv.org/abs/1807.03748
http://proceedings.mlr.press/v119/chen20j.html
https://jxmo.io/posts/nce

INfONCE loss: Interpretation #2

px|y)
p(x)

Mutual information I(X | ¥V) = Z p(x,y) log
X,y

>

pT(y|x)  pT(ylx)

If we assume further p~(y) = p(y) then =
p~(y) p(y)

>

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]
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INfONCE loss: Interpretation #2

px|y)
p(x)

Mutual information I(X | ¥V) = Z p(x,y) log
X,y

>

+ X + X
If we assume further p~(y) = p(y) then P 1) _ P (y1x)

p~(y) py)

> Minimising InfoNCE loss <= maximising mutual information I( f(x™) | f(x))

>

49

References: [van den Oord, Li, Vinyals] [Chen et al. | PMLR ‘20] [Blog post]



https://arxiv.org/abs/1807.03748
http://proceedings.mlr.press/v119/chen20j.html
https://jxmo.io/posts/nce

More flavours of loss functions...

Contrastive Loss o(x) Y(x)
InfoNCE (Oord et al., 2018) Tlog(e + x) |7

MINE (Belghazi et al., 2018) log(x) e’

Triplet (Schroff et al., 2015) T [z + €]+
Soft Triplet (Tian et al., 2020c) 7log(l + ) |e®/ T

N+1 Tuplet (Sohn, 2016) | log(1+2x) €

Lifted Structured (oh Song et al., 201# log(x)]% |e*T€
Modified Triplet Eqn. 10 (Coria et al., 2020) | 2 sigmoid(cx)
Triplet Contrastive Eqn. 2 (Jietal.,2021) |linear linear

Overview of loss functions (from [Tian | Neurips '22])
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https://proceedings.neurips.cc/paper_files/paper/2022/file/7b5c9cc08960df40615c1d858961eb8b-Paper-Conference.pdf

The distribution p™: Choosing positive examples

Image-based data Labeled data

“Grumpy cat”

“Grumpy cat”

Image augmentations Sampling within a class

Time series data

Nearby (in time) samples




The distribution p™: Choosing positive examples

What are image augmentations?

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

From [Chen et al. | PMLR ‘20]

52

References: [Cubuk et al. | CVPR ‘19] [Cubuk et al. | CVPR ‘20]



https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w40/Cubuk_Randaugment_Practical_Automated_Data_Augmentation_With_a_Reduced_Search_Space_CVPRW_2020_paper.html
http://proceedings.mlr.press/v119/chen20j.html

The distribution p : Choosing negative examples

» Most common: random data sample p~(y | x) = p(y)

53



The distribution p : Choosing negative examples
O Works best if

» Most common: random data sample p~ (v | x) = p(y) > n

Melasses samples—per—class

54



The distribution p : Choosing negative examples
O Works best if

» Most common: random data sample p~ (v | x) = p(y) > n

Melasses samples—per—class

> For labeled data: choose with uniform probabillity from a distinct class

“Grumpy cat”

“Grumpy turtle”

55



Application: Supervised contrastive learning for image labelling

Supervised Contrastive Learning

Prannay Khosla * Piotr Teterwak * ' Chen Wang ' Aaron Sarna *
Google Research Boston University Snap Inc. Google Research
Yonglong Tian f Phillip Isola f Aaron Maschinot Ce Liu
MIT MIT Google Research Google Research
Dilip Krishnan

Google Research

Abstract

Contrastive learning applied to self-supervised representation learning has seen
a resurgence in recent years, leading to state of the art performance in the unsu-
pervised training of deep image models. Modern batch contrastive approaches
subsume or significantly outperform traditional contrastive losses such as triplet,
max-margin and the N-pairs loss. In this work, we extend the self-supervised
batch contrastive approach to the fully-supervised setting, allowing us to effec-

Somtialilaresasadabelinfosmation Clustacs of naintshalonainstothesamamaloss

References: [Khosla et al. | Neurips ‘20]
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https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf

Application: Supervised contrastive learning for image labelling

> |Introduces “SupCon” loss = variant of INfoNCE loss with multiple positives

> How are positive and negative samples generated?

57



Application: Supervised contrastive learning for image labelling

> |Introduces “SupCon” loss = variant of INfoNCE loss with multiple positives
> How are positive and negative samples generated?
> Negative samples: choose randomly from another class

> Positive samples:
> First generate two image augmentations of each sample

> All augmentations of images from the same class are positive
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Application: Supervised contrastive learning for image labelling

> Model architecture features a projection head which is discarded for inference

59

References: [Khosla et al. | Neurips ‘20]
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Application: Supervised contrastive learning for image labelling

> Model architecture features a projection head which is discarded for inference

Architecture during train time

=28 MLP / Linear ——=

(Augmented) Input Encoder Projection head Contrastive loss
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Application: Supervised contrastive learning for image labelling

> Model architecture features a projection head which is discarded for inference

Architecture during inference time

=D

Input Encoder Linear classifier Cross entropy loss
Not trained now!

o1

References: [Khosla et al. | Neurips ‘20]
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Application: Supervised contrastive learning for image labelling

» State of the art accuracy on various image datasets

Dataset SImCLR[3] Cross-Entropy Max-Margin [32] SupCon

CIFARI10 93.6 95.0 92.4 96.0
CIFAR100 70.7 75.3 70.5 76.5
ImageNet 70.2 78.2 78.0 78.7

Top-1 accuracy on ResNet-50.

> Recall: Top-n accuracy counts the number of times in which the correct class
appears within the first 7 most probable classes predicted by the classifier

> Performance is significantly better when normalising outputs (cosine similarity)
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Application: Joint behavioural and neural analysis

Article

Learnable latentembeddings for joint
behavioural and neural analysis

https://doi.org/10.1038/s41586-023-06031-6  Steffen Schneider'? Jin Hwa Lee'? & Mackenzie Weygandt Mathis'™
Received: 30 March 2022

Accepted: 28 March 2023 Mapping behavioural actions to neural activity is a fundamental goal of neuroscience.
Published online: 3 May 2023 As our ability torecord large neural and behavioural dataincreases, there is growing
interest in modelling neural dynamics during adaptive behaviours to probe neural
representations' >, In particular, although neural latent embeddings can reveal
underlying correlates of behaviour, we lack nonlinear techniques that can explicitly
and flexibly leverage joint behaviour and neural data to uncover neural dynamics® .
Here, we fill this gap witha new encoding method, CEBRA, that jointly uses behavioural
and neural datain a (supervised) hypothesis- or (self-supervised) discovery-driven
manner to produce both consistent and high-performance latent spaces. We show
that consistency can be used as a metric for uncovering meaningful differences, and
theinferred latents canbe used for decoding. We validate its accuracy and demonstrate
our tool’s utility for both calcium and electrophysiology datasets, across sensory and
motor tasks and in simple or complex behaviours across species. It allows leverage of
single- and multi-session datasets for hypothesis testing or can be used label free.
Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex
kinematic features, for the production of consistent latent spaces across two-photon
and Neuropixels data, and can provide rapid, high-accuracy decoding of natural
videos from visual cortex.
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Openaccess

" Check for updates

References: [Schneider, Lee, Mathis | Nature ‘23]

63



https://www.nature.com/articles/s41586-023-06031-6

Application: Joint behavioural and neural analysis

> Data are time series 1 — (s,, ¢,), where
> S, represents a neural state

> C, represents a context vector

o4
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Application: Joint behavioural and neural analysis

> Data are time series 1 — (s,, ¢,), where
> §, represents a neural state

> C, represents a context vector

> Example: Monkey reaching task
> §, = electrophysiology recordings of somatosensory cortex
> ¢, = position of the monkey’s hand

References: [Schneider, Lee, Mathis | Nature ‘23] [Chowdhury et al. | eLife 20]
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Application: Joint behavioural and neural analysis

> Data are time series 1 — (s,, ¢,), where
> §, represents a neural state

> C, represents a context vector

> Example: Monkey reaching task
> §, = electrophysiology recordings of somatosensory cortex
> ¢, = position of the monkey’s hand

References: [Schneider, Lee, Mathis | Nature ‘23] [Chowdhury et al. | eLife 20]
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Application: Joint behavioural and neural analysis

a */ CEBRA Nonlinear encoder Contrastive learing 3 Low-dimensional
¢ /// ) (neural network (f)) ¥ (loss function) embedding
B?Zta;\é::ur . . e N Final layer
) . ~ o Attract (L) output
Time R Y. G similar
labels ’ N | ‘ samples
N | 1 [ 11 v ‘ o N o o o @)
TR Y i /
Neuraldata |1 11 i 1 W, W, W, W, 7 \
(N) ) i ‘ Repel
_5\ ]\\J_[\\ X P dissimilar
B N ) N | N L O samples

» Uses INfoNCE loss and two ways of choosing positive examples (negative examples are chosen randomly)

~ Based on closeness in time: for anchor (s,, ¢,) pick (S, A C;1a;) fOr some small Af

~ Based on similar context variable: for anchor (s,, ¢,) pick (s,, ¢,) such that ¢, & ¢,
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Application: Joint behavioural and neural analysis

> When trained with behavioural information (CEBRA-Behaviour), computes
embeddings which can be used to reconstruct or visualise behaviour

> When trained using only closeness in time (CEBRA-Time), still allows to
reconstruct some degree of behavioural information!

CEBRA-Behaviour CEBRA-Time conv-pi-VAE conv-pi-VAE autoLFADS t-SNE UMAP
with test time labels without labels

LGN W

References: [Schneider, Lee, Mathis | Nature ‘23]
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Further applications

> Speech recognition (wWav2vec) [Schneider et al. | INTERSPEECH *19] [Baevski et al. | Neurips ‘20]

> Improving sample efficiency of reinforcement learning /srinivas, Laskin, Abbeel | MLR ‘20]
y

Contrastive loss

F / 2
Context C Replay buffer
representations $ 4 t * $ = .
P | 9 =Jo,(09) Reinforcement
Transformer
Masked : W : :
Quantized I “ " [ “ > 106
representations Q é @{ @ @ )L\_ :
/ / / / / :
Latent speech  Z Observation :
representations / \>/ CNN A9 / EEEREI I ] EEEETERTE. > Unsupervised
| Key & =Jo,(%) Learning
| \\ Oy, Encoder / \ /

Learning

Query

N /
4 )

Contrastive

raw waveform X
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The effect of batch size

> Recall: due to memory constraints data is split into batches during train time

» Assume we have a dataset D and partition it into m batches of equal size

D=||B. IBI=1B| Vij<m
=1

> During train time, after each iteration of the full dataset, batches are reshuffled
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The effect of batch size

» Then we can rewrite our loss as

m

L0] = Z 1(0: x) = Z Z 1(0: x)

x€D =1 x€B,

/1



The effect of batch size

» Then we can rewrite our loss as

L0] = Z 1(0: x) = i Z 1(0: x)

x€D =1 x€B,

» Gradient updates computed on entire dataset (batch gradient descent)

0.1 = —az Z V,l(0; x)

=1 xeB,

(2



The effect of batch size

» Then we can rewrite our loss as

m

L0] = Z 1(0: x) = Z Z 1(0: x)

x€D =1 xeB,

> Gradient updates computed on each batch (mini-batch gradient descent)

O =0, — a ) Vyl(0;x)

X€EB;
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The effect of batch size

> For contrastive loss, positive/negative samples only found within one batch

Batch 1 Batch 2 eee PBatchm

Batch 1

Batch 2

Batch m :
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The effect of batch size

> For contrastive loss, positive/negative samples only found within one batch

— Batch 1 Batch 2 eee Batchm

/ Batch 1

Negative example y

Batch 2

Anchor x » o

Batch m :

l4S



The effect of batch size

> A more formal way of expressing the same picture:

/0

[Wiki entry on Jensen’s inequality]
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The effect of batch size

> A more formal way of expressing the same picture:

. T L ] &
Recall Jensen’s inequality — Y log(x) <1 — .
, quality — > log(x) < og(nle>

=1 =1
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The effect of batch size

> A more formal way of expressing the same picture:

L L1 ] &
_ Recall Jensen’s inequality — l:zl log(x;) < log (; ;xl)
» For the InfoNCE loss (with ¢ = 0,7 = 1) we have

Y log ) exp(-d,,) <log Y Y exp(—d,,)

batches batches i

73

[Wiki entry on Jensen’s inequality]



https://en.wikipedia.org/wiki/Jensen's_inequality

The effect of batch size

> A more formal way of expressing the same picture:
. Recall Jensen’s inequality %lzzl log(x,) < log (% ;xl)
> For the InfoNCE loss (with € = 0,7 = 1) we have

Y log ) exp(-d,,) <log Y Y exp(—d,,)

batches batches i

> We are only optimising a lower bound of the actual objective!
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The effect of batch size

70.0
> Typically large batch sizes are required 675
65.0
62.5
—~
2 60.0
— Batch size
57.5 B 256
mm 512
55.0 s 1024
Bm 2048
52.5 e 4096
w8192
50.0 EEEEEN EEmEny
100 200 300 400 500 600 700 800 900 1000
Training epochs

Performance of SImCLR as a function of batch size
and epochs. From [Chen et al. | PMLR ‘20]

80


http://proceedings.mlr.press/v119/chen20j.html

The effect of batch size

> Typically large batch sizes are required
> One possible way around this:

Non-contrastive learning, i.e. BYOL (later!)

4096 2048 1024 512 256
Batch size

O
= ole
\
Z ~— Q\‘
o
= -1}
=
o
—
=
3
S 3|
(-
o
2
8 4} BYOL
g = SimCLR (repro)
-

128

Comparing performance of BYOL vs.

SimCLR for small batch sizes.
From [Grill et al. | Neurips ‘20]
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The effect of the number of negative samples

> |ncreasing the number of negative samples tends to increase performance

o

Accuracy on ImageNet-100 (%)
o U U O L\ln (S BN B e)

0 O
1 1 1

w & U1 O
[ TR SN

1 == CMC

128

o ]
S

256

512

1024
Number of Negatives in NCE

2048 4096 8192

From [Tian, Krishnan, Isola | ECCV ‘20]

accuracy (%)
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58.0
P =
4 57.3 | EGr-S- -
63 - -
% -
54.1 -~
54.9 2
) 7
7
52 o —*— end-to-end
% —®-memory bank
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K (log-scale)

K = number of negative samples.
From [He et al. | CVPR ‘20]
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Non-contrastive learning

> Siamese networks: twin networks joined by a loss function at the top

b el
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Non-contrastive learning

> Siamese networks: twin networks joined by a loss function at the top

b el

“Online”
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Non-contrastive learning

> Siamese networks: twin networks joined by a loss function at the top

> Ways to link the dual networks: let f; be parametrised by vector 0, (i = 1,2)

Direct copy Exponential moving average
0, = 0, 0, = ab; + (1 — @)0,, where 0 < a < 1

References: [Wiki entry on Siamese networks], [PyTorch documentation on stop gradient]
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Non-contrastive learning

> Siamese networks: twin networks joined by a loss function at the top

> Ways to link the dual networks: let f; be parametrised by vector 0, (i = 1,2)

Direct copy Exponential moving average

0, = 0, 0, = ab; + (1 — a)f,, where 0 < a < 1
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Non-contrastive learning: BYOL and SimSiam

Bootstrap Your Own Latent
A New Approach to Self-Supervised Learning

Jean-Bastien Grill*! Florian Strub*! Florent Altché*! Corentin Tallec®' Pierre H. Richemond*!?
Elena Buchatskaya' Carl Doersch’ Bernardo Avila Pires' Zhaohan Daniel Guo'
Mohammad Gheshlaghi Azar' Bilal Piot' Koray Kavukcuoglu! Rémi Munos' Michal Valko'

'DeepMind 2Imperial College

[jbgrill,fstrub,altche,corentint,richemond]@google.com

Abstract

We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image
representation learning. BYOL relies on two neural networks, referred to as online and target
networks, that interact and learn from each other. From an augmented view of an image, we train
the online network to predict the target network representation of the same image under a different
augmented view. At the same time, we update the target network with a slow-moving average
of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a
new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet
using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We
show that BYOL performs on par or better than the current state of the art on both transfer and
semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub.’

e ———— e

Exploring Simple Siamese Representation Learning

Xinlei Chen Kaiming He
Facebook AI Research (FAIR)
» similarity «
Abstract
Siamese networks have become a common structure in predictor h stop-grad

various recent models for unsupervised visual representa- A !
tion learning. These models maximize the similarity be-
tween two augmentations of one image, subject to certain encoder f encoder f
conditions for avoiding collapsing solutions. In this paper,
we report surprising empirical results that simple Siamese zy A "z,

networks can learn meaningful representations even using
none of the following: (i) negative sample pairs, (ii) large
batches, (iii) momentum encoders. Our experiments show
that collapsing solutions do exist for the loss and structure,
but a stop-gradient operation plays an essential role in pre-
venting collapsing. We provide a hypothesis on the impli-
cation of stop-gradient, and further show proof-of-concept

“ »
S ace sy maa

image T
Figure 1. SimSiam architecture. Two augmented views of one
image are processed by the same encoder network f (a backbone
plus a projection MLP). Then a prediction MLP h is applied on one
side, and a stop-gradient operation is applied on the other side. The
model maximizes the similarity between both sides. It uses neither
negative pairs nor a momentum encoder.

References: [Grill et al. | Neurips ‘20] [Chen, He | IEEE '21]
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Non-contrastive learning: BYOL and SimSiam

> Representations produced by two Siamese
networks are trained to match

> Target network parameters are updated as:

> exponential moving average of online
parameters (BYOL)

> Direct copy of online parameters (SimSiam)

References: [Grill et al. | Neurips ‘20] [Chen, He | IEEE '21]
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Non-contrastive learning: BYOL and SimSiam

30 | * Sup. (200-2x)
BYOL (200-2x) * Sup. (4)

>up '.(%Y.DL (4x)

S:I)'//B.YOL (2x)
SimCLR (4X)

o
BYOL SimCLR (2x)

> In downstream tasks: representations learned by
online network are used
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» State-of-the-art performance on ImageNet
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Performance of BYOL and other algorithms
as a function of number of parameters
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Non-contrastive learning

> Why does the model not collapse into a trivial (constant) representation?

» Still a largely unanswered research question!

> The stop-gradient is crucial to prevent representational collapse

References: [Tian,

0.5
50 -
— w/ stop-grad

2 — w/o stop-grad S
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= — w/ stop-grad

— w/o0 stop-grad
-1 . . T ' . . O o pr—r— r— - — -
0 epochs 100 0 epochs 100

Training loss and kNN accuracy for SimSiam when trained
with or w/o stop-gradient; this is reflected in theoretical results

Chen, Ganguli | ICLR '21] [Chen, He | [EEE '21]
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Non-contrastive learning

> Presence of predictor network is crucial to prevent representational collapse

> ‘Eigenspace alignment’ between predictor and the correlation matrix of the

outputs of the online network
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Eigenspace alignment
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Sorted eigenvalue index

References: [Tian, Chen, Ganguli | ICLR '21] [Chen, He | IEEE '21]
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